dc.contributor.author | Frazho, A.E. | |
dc.contributor.author | Ran, A.C.M. | |
dc.date.accessioned | 2019-02-08T11:59:43Z | |
dc.date.available | 2019-02-08T11:59:43Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Frazho, A.E. & Ran, A.C.M. 2018. A note on inner-outer factorization of wide matrix-valued functions. (In Bart, H., Ter Horst, S., Ran, A.C.M. & Woerdeman, H.J., eds. Operator theory, analysis and the state space approach: in Honor of Rien Kaashoek). Operator theory: advances and applications, 271:201-214. [https://doi.org/10.1007/978-3-030-04269-1_8] | en_US |
dc.identifier.isbn | 978-3-030-04268-4 | |
dc.identifier.isbn | 978-3-030-04269-1 (Online) | |
dc.identifier.issn | 0255-0156 | |
dc.identifier.uri | http://hdl.handle.net/10394/31806 | |
dc.identifier.uri | https://link.springer.com/chapter/10.1007/978-3-030-04269-1_8 | |
dc.identifier.uri | https://doi.org/10.1007/978-3-030-04269-1_8 | |
dc.description.abstract | In this paper we expand some of the results of [8, 9, 10]. In fact, using the techniques of [8, 9, 10], we provide formulas for the full rank inner-outer factorization of a wide matrix-valued rational function G with H∞ entries, that is, functions G with more columns than rows. State space formulas are derived for the inner and outer factor of G | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.subject | Inner-outer factorization | en_US |
dc.subject | Matrix-valued function | en_US |
dc.subject | Toeplitz operators | en_US |
dc.subject | State space representation | en_US |
dc.title | A note on inner-outer factorization of wide matrix-valued functions | en_US |
dc.type | Book chapter | en_US |
dc.contributor.researchID | 20000212 - Ran, Andreas Cornelis Maria | |