NWU Institutional Repository

A comparison of clustering algorithms for automatic modulation classification

dc.contributor.authorMouton, Jacques P.
dc.contributor.authorFerreira, Melvin
dc.contributor.authorHelberg, Albertus S.J.
dc.contributor.researchID13041274 - Ferreira, Melvin
dc.contributor.researchID12363626 - Helberg, Albertus Stephanus Jacobus
dc.contributor.researchID24911658 - Mouton, Jacques P.
dc.date.accessioned2020-04-02T06:06:15Z
dc.date.available2020-04-02T06:06:15Z
dc.date.issued2020
dc.description.abstractIn this paper, the k-means, k-medoids, fuzzy c-means, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Ordering Points To Identify the Clustering Structure (OPTICS), and hierarchical clustering algorithms (with the addition of the elbow method) are examined for the purpose of Automatic Modulation Classification (AMC). This study compares these algorithms in terms of classification accuracy and execution time for either estimating the modulation order, determining centroid locations, or both. The best performing algorithms are combined to provide a simple AMC method which is then evaluated in an Additive White Gaussian Noise (AWGN) channel with M-Quadrature Amplitude Modulation (QAM) and M-Phase Shift Keying (PSK). Such an AMC method does not rely on any thresholds to be set by a human or machine learning algorithm, resulting in a highly flexible system. The proposed method can be configured to not give false positives, making it suitable for applications such as spectrum monitoring and regulatory enforcementen_US
dc.identifier.citationMouton, J.P. et al. 2020. A comparison of clustering algorithms for automatic modulation classification. Expert systems with applications, 151: #113317. [https://doi.org/10.1016/j.eswa.2020.113317]en_US
dc.identifier.issn0957-4174
dc.identifier.urihttp://hdl.handle.net/10394/34486
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0957417420301421
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2020.113317
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectAutomatic modulation classificationen_US
dc.subjectConstellation diagramen_US
dc.subjectI/Q planeen_US
dc.subjectClustering algorithmen_US
dc.subjectCentroid estimationen_US
dc.titleA comparison of clustering algorithms for automatic modulation classificationen_US
dc.typeArticleen_US

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: