Kernel bandwidth estimation for non-parametric density estimation: a comparative study
| dc.contributor.author | Van der Walt, Christiaan M. | |
| dc.contributor.author | Barnard, Etienne | |
| dc.contributor.researchID | 21021287 - Barnard, Etienne | |
| dc.date.accessioned | 2014-11-03T13:52:01Z | |
| dc.date.available | 2014-11-03T13:52:01Z | |
| dc.date.issued | 2013 | |
| dc.description.abstract | We investigate the performance of conventional bandwidth estimators for non- parametric kernel density estimation on a number of representative pattern-recognition tasks, to gain a better understanding of the behaviour of these estimators in high- dimensional spaces. We show that there are several regularities in the relative performance of conventional kernel bandwidth estimators across different tasks and dimension alities. In particular, we find that the Silverman rule-of-thumb and maximal-smoothing principle estimators consistently perform competitively on most tasks and dimensions for the datasets considered. | en_US |
| dc.description.uri | http://www.prasa.org/index.php/2012-03-07-10-55-15 | |
| dc.identifier.citation | Van der Walt, C.M. & Barnard, E. 2013. Kernel bandwidth estimation for non-parametric density estimation: a comparative study. In: Conference Proceedings of the 24th Annual Symposium of the Pattern Recognition Association of South Africa. Pretoria. p.107-114. | en_US |
| dc.identifier.isbn | 978-0-86970-771-5 | |
| dc.identifier.uri | http://hdl.handle.net/10394/12119 | |
| dc.language.iso | en | en_US |
| dc.publisher | Pattern recognition association of South Africa (PRASA) | en_US |
| dc.subject | Non-parametric density estimation | en_US |
| dc.subject | Kernel density estimation | en_US |
| dc.subject | Kernel bandwidth estimation | en_US |
| dc.subject | Pattern recognition | en_US |
| dc.title | Kernel bandwidth estimation for non-parametric density estimation: a comparative study | en_US |
| dc.type | Other | en_US |
