NWU Institutional Repository

Kernel bandwidth estimation for non-parametric density estimation: a comparative study

dc.contributor.authorVan der Walt, Christiaan M.
dc.contributor.authorBarnard, Etienne
dc.contributor.researchID21021287 - Barnard, Etienne
dc.date.accessioned2014-11-03T13:52:01Z
dc.date.available2014-11-03T13:52:01Z
dc.date.issued2013
dc.description.abstractWe investigate the performance of conventional bandwidth estimators for non- parametric kernel density estimation on a number of representative pattern-recognition tasks, to gain a better understanding of the behaviour of these estimators in high- dimensional spaces. We show that there are several regularities in the relative performance of conventional kernel bandwidth estimators across different tasks and dimension alities. In particular, we find that the Silverman rule-of-thumb and maximal-smoothing principle estimators consistently perform competitively on most tasks and dimensions for the datasets considered.en_US
dc.description.urihttp://www.prasa.org/index.php/2012-03-07-10-55-15
dc.identifier.citationVan der Walt, C.M. & Barnard, E. 2013. Kernel bandwidth estimation for non-parametric density estimation: a comparative study. In: Conference Proceedings of the 24th Annual Symposium of the Pattern Recognition Association of South Africa. Pretoria. p.107-114.en_US
dc.identifier.isbn978-0-86970-771-5
dc.identifier.urihttp://hdl.handle.net/10394/12119
dc.language.isoenen_US
dc.publisherPattern recognition association of South Africa (PRASA)en_US
dc.subjectNon-parametric density estimationen_US
dc.subjectKernel density estimationen_US
dc.subjectKernel bandwidth estimationen_US
dc.subjectPattern recognitionen_US
dc.titleKernel bandwidth estimation for non-parametric density estimation: a comparative studyen_US
dc.typeOtheren_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
prasa2013-16.pdf
Size:
478.54 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: