The generalized functions of the second kind for general exponential weights
| dc.contributor.author | Mashele, H.P. | en_US |
| dc.contributor.researchID | 21234175 - Mashele, Hopolang Phillip | |
| dc.date.accessioned | 2012-02-29T09:51:49Z | |
| dc.date.available | 2012-02-29T09:51:49Z | |
| dc.date.issued | 2010 | en_US |
| dc.description.abstract | Let I be a finite or infinite interval containing 0, and let W : I → (0, ∞). Assume that W 2 is a weight, so that we may define orthonormal polynomials corresponding to W 2. The generalized functions of the second kind are , where H denotes the Hilbert transform, and v the bounded function on I. We investigate boundedness of the sum of qj (W 2, v, x)2 for the general class of exponential weights | |
| dc.identifier.citation | Mashele, H.P. 2010. The generalized functions of the second kind for general exponential weights. Quaestiones mathematicae, 33(4):477-484. [http://dx.doi.org/10.2989/16073606.2010.541622] | en_US |
| dc.identifier.issn | 1607-3606 | en_US |
| dc.identifier.issn | 1727-933X (Online) | en_US |
| dc.identifier.uri | http://hdl.handle.net/10394/6037 | |
| dc.identifier.uri | http://dx.doi.org/10.2989/16073606.2010.541622 | |
| dc.identifier.uri | http://www.tandfonline.com/doi/abs/10.2989/16073606.2010.541622 | |
| dc.publisher | Taylor & Francis | en_US |
| dc.subject | Hilbert transform | |
| dc.subject | Functions of the second kind | |
| dc.subject | Orthonormal polynomials | |
| dc.subject | Exponential weights | |
| dc.title | The generalized functions of the second kind for general exponential weights | en_US |
