NWU Institutional Repository

The quadratic variation of continuous time stochastic processes in vector lattices

dc.contributor.authorGrobler, Jacobus J.
dc.contributor.authorLabuschagne, Coenraad C.A.
dc.contributor.researchID10173501 - Grobler, Jacobus Johannes
dc.date.accessioned2017-03-15T07:27:00Z
dc.date.available2017-03-15T07:27:00Z
dc.date.issued2017
dc.description.abstractWe define and study order continuity, topological continuity, γ-Hölder-continuity and Kolmogorov–Čentsov-continuity of continuous-time stochastic processes in vector lattices and show that every such kind of continuous submartingale has a continuous compensator of the same kind. The notion of variation is introduced for continuous time stochastic processes and for a γ-Hölder-continuous martingale with finite variation, we prove that it is a constant martingale. The localization technique for not necessarily bounded martingales is introduced and used to prove our main result which states that the quadratic variation of a continuous-time γ-Hölder continuous martingale X is equal to its compensator 〈X〉en_US
dc.identifier.citationGrobler, J.J. & Labuschagne, C.C.A. 2017. The quadratic variation of continuous time stochastic processes in vector lattices. Journal of mathematical analysis and applications, 450(1):314-329. [https://doi.org/10.1016/j.jmaa.2017.01.034]en_US
dc.identifier.issn0022-247X
dc.identifier.urihttp://hdl.handle.net/10394/20828
dc.identifier.urihttps://doi.org/10.1016/j.jmaa.2017.01.034
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0022247X17300562
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectMartingaleen_US
dc.subjectQuadratic variationen_US
dc.subjectStochastic processen_US
dc.subjectStopping timeen_US
dc.subjectVector latticeen_US
dc.titleThe quadratic variation of continuous time stochastic processes in vector latticesen_US
dc.typeArticleen_US

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: