Extension of projection mappings
| dc.contributor.author | De Jager, Pierre | |
| dc.contributor.author | Conradie, Jurie | |
| dc.contributor.researchID | 28190459 - De Jager, Pierre | |
| dc.date.accessioned | 2019-08-26T13:53:04Z | |
| dc.date.available | 2019-08-26T13:53:04Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | We provide sufficient conditions for a map between projection lattices of semi-finite von Neumann algebras to be extended to a Jordan *-homomorphism. These conditions are sufficiently general for the procedures developed herein to have numerous fundamental applications in the study of isometries and composition operators on quantum symmetric spaces. Furthermore, these techniques are of independent interest, since they provide a partial generalization of Dye’s theorem without the requirement that the initial von Neumann algebra be free of type I2 summands | en_US |
| dc.identifier.citation | De Jager, P. & Conradie, J. 2020. Extension of projection mappings. Quaestiones mathematicae, 43(8):1047-1064. [https://doi.org/10.2989/16073606.2019.1599460] | en_US |
| dc.identifier.issn | 1607-3606 | |
| dc.identifier.issn | 1727-933X (Online) | |
| dc.identifier.uri | http://hdl.handle.net/10394/33261 | |
| dc.identifier.uri | https://www.tandfonline.com/doi/abs/10.2989/16073606.2019.1599460 | |
| dc.identifier.uri | https://doi.org/10.2989/16073606.2019.1599460 | |
| dc.language.iso | en | en_US |
| dc.publisher | Taylor & Francis | en_US |
| dc.subject | Extensions | en_US |
| dc.subject | Jordan homomorphisms | en_US |
| dc.subject | Semi-finite von Neumann algebras | en_US |
| dc.title | Extension of projection mappings | en_US |
| dc.type | Article | en_US |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.61 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
